Maternal Immunizations: Protects Mothers, Fetuses and Newborn Infants

Michael T. Brady, MD
Professor of Pediatrics
The Ohio State University
Associate Medical Director
Nationwide Children’s Hospital
Maternal Immunizations: Protects Mothers, Fetuses and Infants

Michael T. Brady MD

Neither I nor my spouse/partner have any relevant financial relationships with the manufacturer(s) or any commercial product(s) and/or provider of commercial products or services discussed in this CME activity.

I do not intend to discuss unapproved/investigative use of commercial product(s)/device(s) in my presentation.
The American Academy of Pediatrics Committee on Infectious Diseases recognizes

S. Michael Marcy, M.D., FAAP

For his contributions to the field of pediatric infectious diseases.

- Service on AAP COID from 1993 to 1999
- Contributions as COID member to AAP Red Book, 1994, 1997, and 2000 editions
 - CDC ACIP member from 2008 to 2012
 - AAP PREP:ID Course Director from 2007 to 2013

Wisdom, insight, and humor characterize Dr. Marcy's tremendous contributions to the field, for the betterment of children's health throughout the United States and the world.
Maternal Immunizations

WHY Immunize Mothers?

• Globally-each year:
 – 600,000-800,000 neonatal deaths due to infections.
 – 10-50% of still births are estimated to be due to maternal/fetal infections.

• Most fatal neonatal infections:
 – Occur prior to completion of routine infant immunization schedules e.g. pertussis, rotavirus, meningococcus, etc.

 OR

 – Caused by agents for which there are no currently approved vaccine, e.g. group B streptococcus, RSV, HSV, etc.
Maternal Immunization

Balancing Risks and Benefits

• Potential to protect mothers, fetuses, and infants from vaccine-preventable diseases.
 VS.

• Potential to cause harm to mothers and/or fetuses and/or infants by administering vaccines.
Maternal Immunizations

Intent: American Academy of Pediatrics
Ethical Considerations for Vaccine and Drug Trials in Pregnant Women and their Infants: The Pediatrician’s Perspective

Committee on Infectious Diseases (COID)
Committee on Bioethics (COB)
Maternal Immunization

- Immune response to different vaccines during pregnancy might be affected by pregnancy trimester.

- Most studies to date do not provide any evidence that pregnancy significantly impacts immune responses to vaccines administered during pregnancy; immune responses appear to be unrelated to maternal age, parity, socioeconomic status, or body weight.

References:
- Omer SB NEJM 376: 1256-1267, 2017
- Baker CT Vaccine 21:3468-3472, 2003
Maternal Transfer of Antibodies

- IgG antibodies are the primary antibody transferred across the placenta

- IgG antibodies are *actively* transported through the placenta by neonatal Fc receptor

- IgG transported by Fc receptors on syncytotrophoblasts of chorionic villae by transcytosis into fetal circulation

Rooopenian DC Nat Rev Immunol 7:715-725, 2007
Maternal Immunization

Transfer of Antibody from Mother to Fetus

- IgG >>> IgM, IgA; IgE
- IgG1 > IgG2, IgG3, IgG4 (may vary based on trimester)
 - Streptococcal Abs: IgG2
 - RSV: IgG1 and IgG2
- Maternally-acquired antibodies may inhibit both serum and mucosal antibodies production in newborn/young infant.

Crowe JE Clinical Infect Dis 2001; 33: 1720-1727
Maternal Immunization

Factors Influencing Maternal Transfer of Antibodies

• Gestational age of the infant.

• Maternal antibody level:
 – Prior infection (s)
 – Prior immunization(s)

• Type of Ig class and IgG subclass

• Health of the placenta
Transport of Maternal Antibodies

Impact of Antigen-specific Antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Fetal: Maternal Ab Ratio (Term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertussis</td>
<td>0.7-1.9</td>
</tr>
<tr>
<td>Group B strep</td>
<td>0.7</td>
</tr>
<tr>
<td>Influenza</td>
<td>0.7-1.0</td>
</tr>
</tbody>
</table>

Bahl R Bull World Health Organ 83: 418-426, 02005
Schlaudecker EP Plos One 8: e70867; 2013
Maternal Transfer of Antibodies

• The half-life of IgG is affected by:
 – IgG subclass.
 – Total IgG concentration: higher IgG levels → higher IgG catabolism.
 – Varies by antigen-specific antibody.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Ab Half-life in Infant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertussis</td>
<td>30-40 days</td>
</tr>
<tr>
<td>Tetanus</td>
<td>50-days</td>
</tr>
<tr>
<td>Group B Strep</td>
<td>60-days</td>
</tr>
</tbody>
</table>

Vidorsson G I Front Immunol 5:520, 2014
deVoer RM Clin Infect Dis 49:58-64, 2009
Munoz FM Vaccine 20:826-837, 2001
Maternal Transfer of Antibodies
Impact of Prematurity

• Pre-term births: 5-18% of pregnancies globally

• IgG transport across the placenta starts at 26-28 weeks gestation

• Transport across placenta is restricted at earlier gestation
 – 28-32 weeks gestation: 0.5-0.6 fetal: maternal ratio
 – Full term: > 1.0 fetal: maternal ratio

• IgG1 transport is more restricted earlier in gestation than IgG2

Maternal Vaccinations and Neonatal Morbidity/Mortality

• 413,034 live births (Tdap/influenza vs. no vaccine)
 – CDC Vaccine Safety Datalink (2004-2014)
 – 25,222 infants hospitalized
 – 157 infant deaths in first 6 months of life

• No association found between infant hospitalization and/or infant mortality and maternal Tdap or influenza vaccine
Maternal Immunization During Pregnancy

<table>
<thead>
<tr>
<th>Routinely Recommended In Pregnancy in US</th>
<th>Not Routinely Recommended in Pregnancy in US But Are Safe</th>
<th>Contraindicated in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza-inactivated Tdap</td>
<td>Anthrax (high risk only)</td>
<td>BCG</td>
</tr>
<tr>
<td></td>
<td>Hepatitis A</td>
<td>Influenza-live</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B</td>
<td>Japanese encephalitis</td>
</tr>
<tr>
<td></td>
<td>HPV</td>
<td>virus-inactivated *</td>
</tr>
<tr>
<td></td>
<td>MenACWY</td>
<td>MMR</td>
</tr>
<tr>
<td></td>
<td>MenB</td>
<td>MMRV</td>
</tr>
<tr>
<td></td>
<td>PCV13</td>
<td>Typhoid*</td>
</tr>
<tr>
<td></td>
<td>PPSV23</td>
<td>Varicella</td>
</tr>
<tr>
<td></td>
<td>Polio-IPV</td>
<td>Zoster</td>
</tr>
<tr>
<td></td>
<td>Rabies (exposure or high-risk)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smallpox (exposure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow fever (high-risk)</td>
<td></td>
</tr>
</tbody>
</table>

*inadequate safety data
Maternal Active Immunization

When To Immunize

• Due to safety concerns, most vaccines administered during pregnancy are recommended to be given in the later half of pregnancy: 2nd & 3rd trimesters

• Tdap during pregnancy*
 – GMT for PT and FHA are higher when given 13-25 wk gestation as compared to > 26 weeks gestation (approximately double)

*Eberhardt CS Clin Infect Dis 2016; 62-829-836
Maternal Antibodies and Interference with Infant Immunization

• Passively-acquired maternal antibodies have the potential to affect not only the concentration of antibodies produced following infant immunization but also the quality of antibody.

• Passively-acquired maternal antibodies do not affect T-cell responses to infant immunization.

• The impact of passively-acquired maternal antibodies is affected by the concentration of maternal antibodies at the time of immunization and the antigen content of the vaccine.

Stegrist CA Vaccine 21:2406-3412, 2003
Initial Use of Maternal Vaccines

• Smallpox results in more severe disease in pregnant women.

• Smallpox vaccine given to pregnant women in late 1800s:
 – Reduced smallpox in mothers.
 – Protected young infants from smallpox early in life.

• Fetal demise was rare.

Burkhardt AE Arch Klin Med 1879; 24:506.
Badell ML Obstet Gynecol 2015, 125: 1439-51
Currently Available
Maternal Immunizations
Tetanus: Risk Factors and Outcomes

Mother

- Unhygienic delivery
- Abortion
- Miscarriage

Child

- Unhygienic care of umbilical stump
- Poor perinatal hygiene
- Inadequate material tetanus immunization

Tetanus Immunization During Pregnancy

• For women with no prior tetanus immunization prior to pregnancy WHO recommends:
 – 2 doses of a tetanus-containing vaccine for the first pregnancy.
 – 1 dose of a tetanus-containing vaccine for each subsequent pregnancy (maximum of 5 doses).

• Tetanus mortality decreased by 92%.

Impact of Tetanus Immunization (2 doses) on Neonatal Tetanus Deaths

Influenza Vaccine: Pregnancy Outcomes

• Influenza morbidity is greater in pregnant women, particularly influenza in 2nd and 3rd trimester. 1,2
• Maternal influenza increases risk of fetal death. 3
• Vaccine safety: Pregnant women = non-pregnant women. 4
• Vaccine efficacy: Pregnant women = non-pregnant women. 5
• Pregnancy outcomes (mothers):
 – Reduced respiratory illness/hospitalization. 5
 – Reduced stillbirths. 5
 – Reduced preterm labor/deliveries. 6

1. Dodds L CMAJ 2007: 176:463-468
2. Louie JK NEJM 2010: 362: 27-3
3. Haberg SE NEJM 2013; 368: 333-340
4. Thompson MG Clin Infect Dis 2014; 58: 449-457
5. Regan AK Clin Infect Dis 2016; 62: 1221-1227
6. MMWR 2011; 60: 1193-1196
Influenza Vaccine and Neonatal Outcomes

• 12,223 pregnant women.

• 1958 (16%) of these women received seasonal influenza vaccine.

• Neonatal outcomes in vaccinated mothers:
 – Pre-term birth – 25% less likely
 – Low-birth-weight – 27% less likely
Maternal Immunization

Influenza Vaccine: Infant Outcomes

• Maternal influenza immunization results in passive transfer of vaccine-generated antibodies to fetus.

• Infant outcomes (<6 months of age):
 – Reduced laboratory-confirmed influenza infection.¹,²
 – Reduced influenza illnesses.³
 – Reduced febrile respiratory illnesses.¹
 – 80% reduction in influenza-related hospitalization.²

2. Shakib JH Pediatrics 2016; 137: e20152360
Efficacy of maternal IIV3 vaccination in preventing influenza illness in the infants until 6 months of age

<table>
<thead>
<tr>
<th>Study</th>
<th>Period, country</th>
<th>Control group</th>
<th>Population</th>
<th>Outcomes</th>
<th>Vaccine efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhi SA, et al. N Engl J Med 2014; 371:918–31</td>
<td>2011-2012 South Africa</td>
<td>Saline placebo</td>
<td>IIV3 1026</td>
<td>Control 1023</td>
<td>PCR-confirmed influenza</td>
</tr>
<tr>
<td>Tapia MD, et al. Lancet ID 2016</td>
<td>2011-2013 Mali</td>
<td>Meningococcal vaccine</td>
<td>IIV3 2064</td>
<td>Control 2041</td>
<td>PCR-confirmed influenza</td>
</tr>
<tr>
<td>Steinhoff MC, et al Lancet ID 2017</td>
<td>2011-2013 Nepal</td>
<td>Saline placebo</td>
<td>IIV3 1,831</td>
<td>Control 1,835</td>
<td>PCR-confirmed influenza</td>
</tr>
</tbody>
</table>
Vaccination of pregnant women in preventing influenza-related hospitalization in their infants

<table>
<thead>
<tr>
<th>Study</th>
<th>Year, country</th>
<th>Design</th>
<th>Population</th>
<th>Outcomes</th>
<th>VE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black SB, et al. 2004</td>
<td>1997-2002 USA</td>
<td>Retrospective cohort</td>
<td>3652 infants of immunized moms 44987 infants of non-immunized moms</td>
<td>Hospitalization for pneumonia and influenza</td>
<td>4% (95%CI: -3, 11)</td>
</tr>
<tr>
<td>France EK, et al. 2006</td>
<td>1995-2001 USA</td>
<td>Retrospective matched cohort</td>
<td>3160 infants of immunized moms 37969 infants of non-immunized moms</td>
<td>Medically attended ARI</td>
<td>4% (95%CI: -1, 1)</td>
</tr>
<tr>
<td>Benowitz L, et al. 2010</td>
<td>2000-2009 USA</td>
<td>Matched case-control</td>
<td><12 months old (113 cases; 192 matched controls)</td>
<td>Lab-confirmed influenza hospitalization</td>
<td>92% (95%CI: 62, 98) in <6 months</td>
</tr>
<tr>
<td>Eick AA, et al. 2011</td>
<td>2002-2005 USA</td>
<td>Prospective cohort</td>
<td>1169 infant mother pairs</td>
<td>Lab-confirmed influenza; ILI hospitalization</td>
<td>41% (95%CI: 7, 63) 39% (95%CI: 16, 55)</td>
</tr>
<tr>
<td>Poehling KA, et al. 2011</td>
<td>2002-2009 USA</td>
<td>Active population-based case-control</td>
<td><6 months old (151 cases; 1359 controls)</td>
<td>Lab-confirmed influenza hospitalization</td>
<td>48% (95%CI: 9, 70)</td>
</tr>
<tr>
<td>Dabrera G, et al. 2014</td>
<td>2013-2014 England</td>
<td>Retrospective study using the screening method</td>
<td><6 months old (43 cases)</td>
<td>Lab-confirmed influenza; Lab-confirmed influenza hospitalization</td>
<td>71% (95%CI: 24, 89) 64% (95%CI: 6, 86)</td>
</tr>
<tr>
<td>Regan AK, et al. 2016</td>
<td>2012-2013 Australia</td>
<td>Retrospective population-based cohort</td>
<td>3169 infants of immunized moms 27859 infants of non-immunized moms</td>
<td>Hospitalization for respiratory illness during influenza season</td>
<td>aHR: 0.75 (95%CI: 0.56, 0.99)</td>
</tr>
</tbody>
</table>

ACOG COMMITTEE OPINION

Number 732 • April 2018

(Replaces Committee Opinion Number 608, September 2014)

Committee on Obstetric Practice

This Committee Opinion was developed by the American College of Obstetricians and Gynecologists’ Immunization and Emerging Infections Expert Work Group and the Committee on Obstetric Practice in collaboration with Neil S. Silverman, MD, and Richard Beigi, MD.

Influenza Vaccination During Pregnancy

ABSTRACT: Influenza vaccination is an essential element of prepregnancy, prenatal, and postpartum care because influenza can result in serious illness, including a higher chance of progressing to pneumonia, when it occurs during the antepartum or postpartum period. In addition to hospitalization, pregnant women with influenza are at increased risk of intensive care unit admission and adverse perinatal and neonatal outcomes. The Centers for Disease Control and Prevention’s Advisory Committee on Immunization Practices and the American College of Obstetricians and Gynecologists recommend that all adults receive an annual influenza vaccine and that women who are or will be pregnant during influenza season receive an inactivated influenza vaccine as soon as it is available. In the United States, the influenza season typically occurs from October to May. Ideally, an influenza vaccination should be given before the end of October, but vaccination throughout the influenza season is encouraged to ensure protection during the period of circulation. Any of the licensed, recommended, age-appropriate, inactivated influenza vaccines can be given safely during any trimester. Therefore, it is critically important that obstetrician–gynecologists and other obstetric care providers recommend and advocate for the influenza vaccine. Obstetrician–gynecologists are encouraged to stock and administer the influenza vaccine to their pregnant patients in their offices, and should get the influenza vaccine themselves every season. If the influenza vaccine cannot be offered in a practice, obstetrician–gynecologists and obstetric care providers should refer patients to another health care provider, pharmacy, or community vaccination center. This updated Committee Opinion includes more recent data on the safety and efficacy of influenza vaccination during pregnancy and recommendations for treatment and postexposure chemoprophylaxis.
Influenza Vaccine: Prevention of Influenza and Pertussis

• Study in South Africa: 2011-2012.

• Influenza vaccine (1062) and Placebo (1054).

• Efficacy in infants (reduction of infection):
 – Influenza – 50%
 – Pertussis – 40%

Pertussis During Pregnancy

• Overall morbidity of pertussis among pregnant women compared with non-pregnant women is not increased.

• Maternal pertussis is “tiresome” by not associated with obstetric complications or preterm delivery/disease.

Complications of Pertussis in Infants
United States, 1997-2000

<table>
<thead>
<tr>
<th>Age</th>
<th>No. With Pertussis</th>
<th>Hospitalizations</th>
<th>Pneumonia</th>
<th>Seizures</th>
<th>Encephalopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 Months</td>
<td>7,203</td>
<td>4,543 (63%)</td>
<td>847 (12%)</td>
<td>103 (1%)</td>
<td>15 (.2%)</td>
</tr>
<tr>
<td>6-11 Months</td>
<td>1,073</td>
<td>301 (28%)</td>
<td>92 (8%)</td>
<td>7 (.6%)</td>
<td>1 (.1%)</td>
</tr>
</tbody>
</table>

CDC. *MMWR.* 2002;51:73-76
CA Pertussis Cases (12/31/2010)

• 9,143 confirmed, probable and suspect cases, 24.3 cases/100,000

• This was the most cases reported in California since 1955 and the highest incidence since 1962

• 10 deaths (case fatality rate <3 months = 1.6%)
 – 9 infants <2 months; no DTaP doses
 – 1 premature infant, age 2 months: 1 DTaP
 – Cough illness common in parents or sibs
Rates of reported pertussis by age -- California, Jan 1 - Aug 24, 2010

As of 8/24/2010
Vaccine Safety
Tdap: Maternal Immunization

• Injection site reactions/pain were common

• No serious adverse events in mothers nor infants

• Possible increase in chorioamnionitis

Cayton JB Vaccine 35: 4072-4078, 2017
Munoz FM JAMA 311: 1760-1769, 2014
Pertussis Immunization During Pregnancy

- Booster doses of Tdap increase pertussis antibodies in pregnant women.

- Maternal Tdap given at 27 through 30 weeks gestation results in higher cord blood pertussis antibodies than when Tdap is administered at ≥31 weeks gestation.

Munoz FM: Clin Infect Dis 2014; 59 (Suppl.7):5415-27
Abu Raya B: Vaccine 2014: 32:5787-93
Efficacy of Maternal Tdap

- Maternal Tdap vaccine effectiveness in preventing pertussis in infants:
 - 91.4% in first 2 months of life
 - 69% during first year of life

- Maternal Tdap during pregnancy provided additional and earlier protection than pre-pregnancy DTaP and/or Tdap alone.
Maternal Vaccines Strategies in Development
Immunity To RSV Infection

• Neutralizing antibodies directed against the RSV F and G proteins are the primary antibodies assumed to confer immunity against RSV infection.

• Repeated RSV infections suggest that the immune response following natural RSV infection does not provide life-long immunity/protection.

Hall C NEJM 360: 588-598; 2009.
Prevention of RSV in Infants by Passive Antibody Therapy

- RSV-IGIV (RespiGam)-high-titer RSV polyclonal IGIV
- Palivizumab (Synagis)
- Motavizumab (Numax)
RSV Vaccines: Early attempts Hampered by Adverse Events

• Formalin-inactivated RSV vaccine given to RSV seronegative children → “enhanced RSV disease” following natural exposure to RSV.

• Formalin-inactivated RSV vaccine:
 – Antigens not processed in cytoplasm → lack of protective antibodies and CD4 + helper T-cell priming.
 – Pathogenic Th2 memory response.
 – RSV exposure → excess eosinophils, neutrophils, monocytes and immune complex deposition in lungs.

Omer SB NEJM 376: 1256-1267, 2017
KIM HW. Am J Epidemiol 89:533-434, 1969
Fulginiti VA AM J Epidemiol 89:435-448, 1969
Candidate RSV Vaccines

• Live attenuated virus vaccines
• Whole inactivated virus vaccines
• Particle-based subunit vaccines
• Nucleic acid vaccines
• Gene-based vector vaccines

Omer SB NEJM 376: 1256-1267, 2017
Maternal Active Immunization

The Case for Maternal RSV Immunization

- Transfer of material RSV Abs to full term infants are 100% of maternal levels.¹
- Maternally-derived Abs decline rapidly but are still detectable at 5-7 months of age.²
- Maternally-derived RSV Abs protect against severe RSV during first 5-7 months of age.²
- Maternal Immunization with a nanoparticle RSV vaccine:³
 - Safe.
 - Immunogenic.
 - Passive transfer to fetus.
 - Reduced hospitalizations.

3. Glenn GM J Infect Dis 2016; 213; 411-422
GBS Disease in Infants Before Prevention Efforts

Early-onset: 0-6 days of life

Late onset: 7-89 days of life

Rate of Early- and Late-Onset GBS, 1990-2008

Early-onset GBS

Late-onset GBS

Before national prevention policy
Transition
Universal screening

Source: Active Bacterial Core surveillance / Emerging Infections Program
Risk Factors for Early-onset GBS Disease

- **Obstetric risk factors:**
 - Preterm delivery
 - Prolonged rupture of membranes
 - Infection of the placental tissues or amniotic fluid / fever during labor
- **GBS in the mother’s urine during pregnancy (marker for heavy colonization)**
- **Previous infant with GBS disease**
- **Low maternal levels of anti-GBS antibodies**
- **Demographic risk factors**
 - African American
 - Young maternal age
Group B streptococcal Vaccines

• Polysaccharide vaccines

• Conjugated polysaccharide vaccines (in current clinical trials)
Group B streptococcal Vaccines

• Conjugated polysaccharide vaccines:
 – Monovalent
 – Trivalent (Ia, Ib and III)

• Serotypes Ia, Ib and III cause majority of GBS in Americas and Europe

• Globally, Serotypes II and V cause GBS disease in addition to Ia, Ib and III.

Omer SB NEJM 376: 1256-1267, 2017
Group B Streptococcal Vaccines

- Trivalent Serotypes Ia, Ib and III Vaccine has undergone phase I and 2 trials:
 - Safe.
 - Immunogenic.
 - Maternal Abs transferred to newborn.

Madhi SA Vaccine 31(Suppl 4): D52-D57, 2013
Incidence of meningococcal disease in children aged <10 years, by age and serogroup—United States, 2010-2016

Source: National Notifiable Diseases Surveillance System (NNDSS) data with additional serogroup data from Active Bacterial Core surveillance (ABCs) and state health departments
Incidence of meningococcal disease among infants aged <1 year by age group and serogroup – United States, 2010-2016

Source: National Notifiable Diseases Surveillance System (NNDSS) data with additional serogroup data from Active Bacterial Core surveillance (ABCs) and state health departments
Meningococcal Vaccines Available in the US

- **MenACWY**: polysaccharide capsule conjugated with carrier protein for meningococcal serogroups A, C, W and Y.

- **MenB**: vaccine developed using outer-membrane proteins of meningococcal serogroup B.

- Safety and efficacy studies in pregnancy are in early stages.

- Since different serogroups might be more relevant in other countries, alternate vaccines might be appropriate for different countries.
Maternal Immunization

Maternal Immunization with Pneumococcal Polysaccharide Vaccine (PPV)

- Safe; well tolerated.
- Infants had high titers of pneumococcal Abs out to 4 months of age.
- Response to PPV in infants at 7 to 17 weeks of age resulted in fair responses to a few PPV antigens but most were poor.
- Revaccination at 3 years of age with PPV resulted in a good response to all PPV antigens (no immune tolerance).
Pneumococcal Vaccine During Pregnancy

• Pregnant women who receive pneumococcal polysaccharide vaccine in 3rd trimester:
 – Vaccine is safe and immunogenic.
 – Transplacental transfer of pneumococcal antibodies related strains in pneumococcal polysaccharide vaccine.
 – Antibody half-life of 35 days.
 – Breast milk had detectable antibodies until 5 months of age.

Shahid NS: Lancet 1995;346:1252-57
Haemophilus Influenzae b Vaccine During Pregnancy

- Maternal immunization with Hib vaccine in 3rd trimester:
 - Safe and immunogenic.
 - Conjugate vaccine results in better Hib antibody levels in both mother and newborn infant than polysaccharide vaccine.
 - Infants whose mothers received Hib vaccine during pregnancy had no interference with infant response to Hib vaccine series.
 - May play a role in non-industrialized countries without infant Hib vaccine program.

Englund: Vaccine: 2003; 21:3455-3459
Englund: J Infect Dis 1995; 171:99-105
Neonatal HSV

- Infants exposed natally to HSV who had higher titers of transplacentally-derived HSV neutralizing antibodies had better outcomes/ lower infection rates than infants with low Ab titers

- An effective maternal HSV vaccine could:
 - Reduce risk of acquiring a primary genital HSV infection.
 - Boost maternal antibody levels to provide infants with higher neutralizing antibodies at birth.

Yeager AS Infect Immun 29: 532-538; 1980
Harger JH J Perinatol 10: 16-19; 1990